Multi-Tenant SaaS API Endpoint Structure
Guide

This document provides recommended endpoint structures for a multi-tenant SaaS application, enabling secure and
organized access to tenant-specific resources.

1. Key Principles

¢ [solate tenants by namespace in APl endpoints.
e Support both path and subdomain tenant identification patterns.
¢ Follow RESTful conventions where appropriate.

2. Endpoint Naming Patterns

2.1. Path-based Tenant Identification

POST  /api/{tenantId}/users
GET /api/{tenantId}/projects/{projectld}
PUT /api/{tenantId}/settings

2.2. Subdomain-based Tenant Identification

POST  https://{tenant}.api.example.com/users
GET https://{tenant}.api.example.com/projects/{projectId}
PUT https://{tenant}.api.example.com/settings

Choose the approach best suited for your application and infrastructure.

3. Sample Resource Definitions

Resource Endpoint Example Description

User List GET /api/{tenantId}/users Retrieve all users for a tenant
Create Project POST /api/{tenantId}/projects Create a new project for a tenant
Project Detail GET /api/{tenantId}/projects/{projectId} Retrieve a specific project
Organization Settings GET /api/{tenantId}/settings Get or update tenant settings

4. Authentication & Authorization

e All endpoints require authentication (e.g., bearer token in the Authorization header).
e Ensure that tokens are scoped to specific tenants to prevent cross-tenant access.

5. Error Responses

e Use standard HTTP response codes: 401 Unauthorized, 403 Forbidden, 404 Not Found, etc.
e Return tenant-scoped error messages when applicable.

6. Example: Get Users for Tenant

GET /api/acme-corp/users
Authorization: Bearer <token>



{

"users": [
{"id": "ul", "name": "John Doe"},
{"id": "u2", "name": "Jane Smith"}
]

}

7. Versioning (Optional)
GET /api/vil/{tenantId}/users

Version endpoints to ensure backward compatibility.



	Multi-Tenant SaaS API Endpoint Structure Guide
	1. Key Principles
	2. Endpoint Naming Patterns
	2.1. Path-based Tenant Identification
	2.2. Subdomain-based Tenant Identification

	3. Sample Resource Definitions
	4. Authentication & Authorization
	5. Error Responses
	6. Example: Get Users for Tenant
	7. Versioning (Optional)


