
Multi-Tenant SaaS API Endpoint Structure
Guide
This document provides recommended endpoint structures for a multi-tenant SaaS application, enabling secure and
organized access to tenant-specific resources.

1. Key Principles
Isolate tenants by namespace in API endpoints.
Support both path and subdomain tenant identification patterns.
Follow RESTful conventions where appropriate.

2. Endpoint Naming Patterns

2.1. Path-based Tenant Identification

POST /api/{tenantId}/users
GET /api/{tenantId}/projects/{projectId}
PUT /api/{tenantId}/settings

2.2. Subdomain-based Tenant Identification

POST https://{tenant}.api.example.com/users
GET https://{tenant}.api.example.com/projects/{projectId}
PUT https://{tenant}.api.example.com/settings

Choose the approach best suited for your application and infrastructure.

3. Sample Resource Definitions
Resource Endpoint Example Description

User List GET /api/{tenantId}/users Retrieve all users for a tenant

Create Project POST /api/{tenantId}/projects Create a new project for a tenant

Project Detail GET /api/{tenantId}/projects/{projectId} Retrieve a specific project

Organization Settings GET /api/{tenantId}/settings Get or update tenant settings

4. Authentication & Authorization
All endpoints require authentication (e.g., bearer token in the Authorization header).
Ensure that tokens are scoped to specific tenants to prevent cross-tenant access.

5. Error Responses
Use standard HTTP response codes: 401 Unauthorized, 403 Forbidden, 404 Not Found, etc.
Return tenant-scoped error messages when applicable.

6. Example: Get Users for Tenant
GET /api/acme-corp/users
Authorization: Bearer <token>

{
 "users": [
 {"id": "u1", "name": "John Doe"},
 {"id": "u2", "name": "Jane Smith"}
]
}

7. Versioning (Optional)
GET /api/v1/{tenantId}/users

Version endpoints to ensure backward compatibility.

	Multi-Tenant SaaS API Endpoint Structure Guide
	1. Key Principles
	2. Endpoint Naming Patterns
	2.1. Path-based Tenant Identification
	2.2. Subdomain-based Tenant Identification

	3. Sample Resource Definitions
	4. Authentication & Authorization
	5. Error Responses
	6. Example: Get Users for Tenant
	7. Versioning (Optional)

