
Versioning Strategy for Web Services API
This document outlines the strategy for versioning the Web Services API to ensure backward compatibility,
usability, and clarity for clients.

1. Introduction

API versioning is necessary to safely evolve the API without breaking existing client integrations. This strategy
describes when and how to introduce new versions.

2. Versioning Scheme

The API will use a simple MAJOR versioning format:

v1, v2, v3, ...

Only the MAJOR version number will be exposed to clients.

3. Versioning Location

The API version will be included in the URL path:

https://api.example.com/v1/resource

Other schemes such as header-based versioning are not supported.

4. Versioning Policy

Non-breaking changes (e.g., adding fields to responses) do not require a new version.
Breaking changes (e.g., removing fields, changing data types) require a new MAJOR version.
Deprecated versions will be supported for at least 12 months before removal.

5. Example Endpoints

GET /v1/users/123
GET /v2/users/123

6. Version Lifecycle

Status Description

Active Supported for new and existing clients.

Deprecated Supported, but will be removed after notification period.

Retired No longer supported. Requests will return an error.

7. Deprecation & Communication

Deprecation notices will be communicated at least 3 months before removal.
Announcements via email and developer portal.
Clients are encouraged to migrate to the latest version as soon as possible.

8. Changelog

Detailed change logs will be published with each new version to guide client migrations.

	Versioning Strategy for Web Services API
	1. Introduction
	2. Versioning Scheme
	3. Versioning Location
	4. Versioning Policy
	5. Example Endpoints
	6. Version Lifecycle
	7. Deprecation & Communication
	8. Changelog

