
Anti-Money Laundering Logic Code Quality
Analysis
Scope
This document presents a code quality analysis sample for key logic in an Anti-Money Laundering (AML)
system. It highlights strengths, weaknesses, and suggests improvement areas based on code review best
practices.

1. Sample AML Detection Logic
Python Example:

def is_suspicious_transaction(transaction):
 if transaction.amount > 10000 and transaction.country != "US":
 return True
 if transaction.origin_account in blacklisted_accounts:
 return True
 if transaction.frequency > 5 and transaction.period_days < 2:
 return True
 return False

2. Code Quality Analysis

Strengths
Logic is straightforward and readable.
Conditions are clearly separated.
Early returns simplify control flow.

Weaknesses
Hardcoded thresholds reduce flexibility.
Lack of input validation and type checks.
Magic values (e.g., 10000, 5, 2).
No logging or traceability on rule match.

Improvement Areas
Extract thresholds and blacklists to configurable parameters.
Add input validation and error handling.
Add inline documentation and logging for auditability.
Replace magic numbers with named constants.

3. Enhanced Example

THRESHOLD_AMOUNT = 10000
COUNTRY_DOMESTIC = "US"
MAX_FREQUENCY = 5
MIN_PERIOD_DAYS = 2
def is_suspicious_transaction(transaction, blacklisted_accounts):
 if not hasattr(transaction, "amount") or not hasattr(transaction, "origin_account"):
 # Handle incomplete data
 return False
 if transaction.amount > THRESHOLD_AMOUNT and transaction.country != COUNTRY_DOMESTIC:
 # Large, international transfer
 return True
 if transaction.origin_account in blacklisted_accounts:
 # Transaction originates from known blacklisted account
 return True
 if transaction.frequency > MAX_FREQUENCY and transaction.period_days < MIN_PERIOD_DAYS:
 # High-frequency, short-period activity
 return True
 return False

4. Recommendations
Adopt configuration-driven rule thresholds for maintainability.
Improve test coverageâ€”use unit tests for all logic paths.
Integrate detailed logging and alerting on suspicious detections.
Review and refactor code for security, clarity, and extensibility.

	Anti-Money Laundering Logic Code Quality Analysis
	Scope
	1. Sample AML Detection Logic
	2. Code Quality Analysis
	Strengths
	Weaknesses
	Improvement Areas

	3. Enhanced Example
	4. Recommendations

