

Data-at-Rest Encryption Architecture Overview

1. Introduction

Data-at-rest encryption is the process of encrypting stored data to prevent unauthorized access or exposure. This document provides an overview of a typical Data-at-Rest Encryption Architecture.

2. Key Components

1. Data Storage Systems

Any system or service where sensitive data is stored, such as file systems, databases, and object storage.

2. Encryption/Decryption Module

Handles cryptographic operations to secure and retrieve information.

3. Key Management Service (KMS)

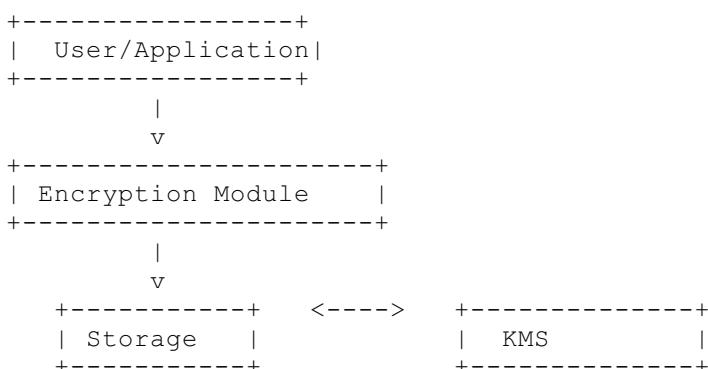
Centralized system responsible for the creation, storage, rotation, and deletion of encryption keys.

4. Access Policy Controller

Defines and enforces policies governing access to cryptographic keys and encrypted data.

3. Data Flow

1. User or application issues a read/write operation to the storage system.
2. On write, data is encrypted by the Encryption Module before being stored to disk.
3. Encryption keys are fetched securely from the KMS according to policy.
4. On read, stored data is decrypted by the Encryption Module using the key fetched from KMS.
5. Decrypted data is returned to the user or application.


4. Key Management Lifecycle

- **Key Generation:** KMS generates cryptographically strong keys for encryption.
- **Key Storage:** Keys are securely stored within KMS, inaccessible to general storage systems.
- **Key Usage:** The Encryption Module requests keys as needed, according to enforced access policies.
- **Key Rotation:** Keys are rotated periodically to reduce exposure.
- **Key Deletion:** Expired or compromised keys are securely destroyed.

5. Security Considerations

- Separation of duties between those managing storage and those managing keys.
- Audit logging of key access and usage operations.
- Strong access controls and authentication for all KMS operations.
- Regular testing and validation of cryptographic controls.

6. Diagram (Sample)

Summary

Data-at-Rest Encryption ensures that stored data remains secure and unreadable without authorized key access, leveraging centralized key management and secure cryptographic practices.